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Abstract. Minimizing a convex function over a convex sehidimensional space is a basic, general
problem with many interesting special cases. Here, we present a simple new algorithm for convex
optimization based on sampling by a random walk. It extends naturally to minimizing quasi-convex
functions and to other generalizations.
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1. Introduction

The problem of minimizing a convex function over a convex s@&'liis a common
generalization of well-known geometric optimization problems such as linear pro-
gramming as well as a variety of combinatorial optimization problems including
matchings, flows and matroid intersection, all of which have polynomial-time algo-
rithms. As such, it represents a frontier of polynomial-time solvability and occupies
a central place in the theory of algorithms.

In his groundbreaking work, Khachiyan [1979] showed that the Ellipsoid method
[Yudin and Nemirovski 1976] solves linear programs in polynomial time. Subse-
guently, Karp and Papadimitriou [1982], Padberg and Rao [1981], aotb¢rEl
etal.[1981] independently discovered the wide applicability of the Ellipsoid method
to combinatorial optimization problems. This culminated in the book by the last set
of authors [Gotschel et al. 1988], in which it is shown that the Ellipsoid method
solves the problem of minimizing a convex function over a convex sif'ispec-
ified by aseparation oraclethat is, a procedure that given a poxqteither reports
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that the set contains or returns a halfspace that separates the set fofor the
special case of linear programming, the oracle simply checks if the query point
satisfies all the constraints of the linear program, and if not, reports a violated
constraint; another well-known special cassasidefinitgorogramming. Vaidya
[1996] improved the complexity via a more sophisticated algorithm.

In this article, we present a simple new algorithm for the problem, based on
random sampling. Its complexity is optimal in terms of the number of oracle queries,
but the overall running time can be higher than that of previous algorithms (see
Table | at the end of Section 2 for a precise comparison). The key component of
the algorithm is sampling a convex set by a random walk. Random walks have
long been studied for their mathematical appeal, but of late they have also played a
crucial role in the discovery of polynomial-time algorithms. Notable applications
include estimating the volume of a convex set [Dyer et al. 1991] and computing the
permanent of a nonnegative matrix [Jerrum et al. 2001]. They have also been usedin
machine learning and online algorithms [Kalai and Vempala 2002]. Our algorithm
is a novel application of random walks to the field of optimization (for an earlier
application, see Kannan et al. [1995]). For the analysis, we prove a generalization
of Grunbaum'’s theorem [Grunbaum 1960] about cutting convex sets (see Section
4.1); this might be of interest in other settings.

So far, we have assumed that the convex set of interest has an efficient separation
oracle. A natural question is whether optimization can be solved using a significantly
weaker oracle, namelymembershipracle (which reports whether a query point
is in the set or not, but provides no other information). One of the main results in
Grotschel et al. [1988] is that a linear function can be optimized over a convex set
K given only by a membership oracle, provide€ds “centered”, that is, we are also
given a pointy and a guarantee that a ball of some radiasoundy is contained in
K. The algorithm is intricate and involves a sophisticated variant of the Ellipsoid
method, called thehallow-cutEllipsoid (note that feasibility is trivial since we are
given a feasible point). Our algorithm provides a simple solution to this problem.
In fact, as we show in Section 6, it solves the following generalizatiorKlée
the intersection of two convex sdfs andK,, whereK is a “centered” convex set
with a membership oracle arif}, is a convex set with a separation oracle; find a
pointin K if one exists. The generalization includes the special case of minimizing
a quasi-convex function over a centered convex set given by a membership oracle.
This problem (and its special case mentioned above) are not known to be solvable
using the Ellipsoid method or Vaidya’s algorithm.

2. The Algorithm

In this section, we present an algorithm for thasibilityproblem: find a pointin a
given convex set specified by a separation oracle. This can be used to minimize any
guasi-convexunction. A functionf : R" — R is called quasi-convex if, for any
real numbet, the sefx € R"| f(x) < t}is convex. Note that any convex function
is also quasi-convex. The problem of minimizing a quasi-convex function is easily
reduced to the feasibility problem: to minimize a quasi-convex functipr), we
simply add the constrairft(x) < t and search (in a binary fashion) for the optirnal

In the description below, we assume that the convexX<s&t contained in the
axis-aligned cube of widtR centered at the origin; further € is nonempty then it
contains a cube of width(see, e.g., Bertsimas and Tsitsiklis [1997] andi&chel
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Fic. 1. Anillustration of the algorithm.

et al. [1988] for a justification). The choice of cubes here is somewhat arbitrary;
we could instead use balls, for example. The paranieierequal to Iog’r3.

Algorithm.

Input: A separation oracle for a convex set K and a number L.

Output: A point in K or a guarantee that K is empty.

1. Let P be the axis-aligned cube of width R with center z=0.

2. Check if z is in K. If so then report Z and stop. If not, then let a'lx < b
be the halfspace containing K reported by the oracle. Set H = {x|a'x <
a'z).

3. Set P = PN H. Pick N random points VY1,VYo,..., YN from P. Set Z to be their
average: Z= & >N v

4. Repeat steps 2 and 3 at most 2nL times. Report K is empty.

Roughly speaking, the algorithm (see Figure 1 for an illustration) is computing
an approximate centroid in each iterattoithe number of samples required in
each iterationN, is O(n) for an arbitrary convex set iR" andO(log® m) if K is
a polyhedron withm inequalities (i.e., a linear program).

The idea behind the algorithm is that the volume of the enclosing polyRoge
likely to drop by a constant factor in each iteration. We prove this in Section 4.2
(see Lemma 5) and derive as a consequence that if the algorithm does not stop in
2nL iterations, therK must be empty with high probability (Theorem 6). Thus,
the total number of calls to the separation oracle is at mp&t Zhis matches
the (asymptotic) bound for Vaidya’s algorithm, and is in general the best possible
[Yudin and Nemirovski 1976]. The Ellipsoid algorithm, in contrast, tak&€s?L )
iterations and as many calls to the oracle.

The idea of an algorithm based on computingekactcentroid was suggested in 1965 by Y. Levin
[Levin 1965], but is computationally intractable.
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TABLE I. CoMPLEXITY COMPARISON

Optimization/Feasibility| Optimization with a
Algorithm with a Separation oracle Membership oracle
Ellipsoid O(N’LT + n®L) O(nLT + n'2L)
Vaidya’'s O(NLT + n338L) N/A
Random walk O(NLT +n’L) O(nSLT +n’L)

Each iteration of our algorithm uses random samples from the current polytope
P. The time per iteration depends on how quickly we can draw random samples
from P. The problem of sampling from a convex set has received much attention
in recent years [Dyer et al. 1991; LasZ and Simonovits 1993; Kannan et al. 1997;
Lovasz 1998; Kannan and Lasz 1999], in part because it is the only known way
of efficiently estimating the volume of a convex set. The general idea is to take a
random walk in the set. There are many ways to walk randomly; of thesbathe
walk (go to a random point within a small distance) [Kannan andalsavi999] and
hit-and-run(go to a random point along a random direction) [aez '1998] have
the best known bounds on the number of steps needed to draw a random sample.
The bounds on the number of steps depend on how “round” the convex set is. For
a set that is close tisotropic position(see Section 4)Q(n®) steps are enough to
get one nearly random point from a “good” starting distribution. In our case, the
initial convex set, the cube, is indeed in isotropic position. However, this might not
be the case after some iterations. As we describe in Section 5, this problem can
be tackled by computing an affine transformation that keeps the current polytope
P in near-isotropic position. We also propose an alternative (in Section 5.1) that
avoids this computation and instead incorporates the information about isotropy
implicitly in the steps of a random walk by maintaining a set of points. The time per
iteration of the algorithm is bounded I6%(n*) steps of a random walk. Each step of
the walk takegO(n?) arithmetic operations to implement, and hence the algorithm
takesO(n®) arithmetic operations per iteration in addition to one oracle call.

In Section 6, we describe a variant of the algorithm for optimization when we
are given a membership oracle. We conclude this section with a comparison of the
complexities of the three algorithms given a separation oracle or given amembership
oracle. The parametdr denotes the time taken by the relevant oracle to answer
a query.

In practice, drawing random samples from convex sets might be much faster than
the known worst-case bounds; also, sampling convex sets is an active research area
and there might well be faster sampling methods in the future that would directly
improve the complexity of the random walk algorithm.

3. Preliminaries

The following definitions will be useful throughout the analysis. We assume that
all our convex sets are closed and bounded.

Definition 1. A convex seK in R" is said to be irisotropic positiorif its center
of gravity is the origin, that is, for a random poixin K,

EK(X) =0
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and its covariance matrix is the identity, that is,
Ex(xx") = 1.

Equivalently, for any unit vector (||v] = 1),

1 T )2
V' X)“dx = 1.
vol(K) /K( )
In other words, for a s&f in isotropic position, the average squared length in any
direction is 1. In particular, this implies that

1 2
dx=n.
V0|(K)/Knxn x=n

For any full-dimensional convex set, there exists an affine transformation that puts
the set in isotropic position. To bring a convex gewith center of gravityz into
isotropic position, letA = Ex ((x — 2)(x — 2)T) be its covariance matrix. Sind¢

is full-dimensional A is positive definite, and so there exists a maBigsuch that

B2 = A~L. Now define the transformatidd’ = {y : y = B(x — 2), x € K}. Then
Ex/(y) = 0andEx (yy") = I.

Definition 2.  We say that a convex sktis in near-isotropicposition if for any
unit vectorv,

1 1 3
3 = /K(vT(x - X<

wherex is the centroid ofK. Equivalently, the covariance matrix of the uniform
distribution overK has eigenvalues betwegrand3.

The Minkowski sunof two setsA, B in R" is defined as
A+B={y+z|ye A ze B}

For example, the Minkowski sum,+ r B, of a pointx and a ball B of radiusr is
the ball of radius centered ax.

The following theorem is known as the Brunn—Minkowski inequality (see, e.g.,
Gardner [2002] and Schneider [1993]).

THEOREM 1. Let A and B be full-dimensional convex subset®bfThen for
anya € [0, 1],
VOI(LA + (1 — 2)B)7 > Avol(A)s + (1 — A)vol(B)7.
Some of our proofs utilize logconcave functions, which we introduce next.
Definition 3. A function f : R" — R, is logconcaveff for any two points
a,b e R"and anyx € (0, 1),
f(ra+ (1 —A)b) > (@) f(b)*.

In other words, a nonnegative functidnis logconcave if its support is convex
and logf is concave. For example, afunction thatis constant over a bounded convex
set and zero outside the set is logconcave. Another example is a Gaussian density
function. It can be easily verified from the definition above that the product of two
logconcave functions is also logconcave (but their sum is not).
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Finally, we will use the following simple fact from linear algebra. When we
apply a linear transformatioA to a compact convex sét, then the volume of the
resulting setAK is |det(A)|vol(K).

4. Analysis

In this section, we prove that with high probability, the algorithm needs Grly)
random points per iteration ar@(nL) iterations. Section 5 describes how to effi-
ciently obtain the random points in each iteration.

4.1. GEOMETRIC PRrROPERTIES The following theorem was proved by
Grunbaum.

THEOREM2 (GRUNBAUM 1960). For a convex set K ifR", any halfspace that
contains the centroid of K also contains at ledge of the volume of K.

Here, we prove a generalization.

THEOREM 3. Let K be a convex set in isotropic position and z be a point at
distance t from its centroid. Then any halfspace containing z also contains at least
I —t of the volume of K.

Theorem 3 witht = 0 clearly implies Grunbaum'’s theorem for isotropic convex
sets. Further, any convex skt can be mapped to an isotropic one by an affine
transformation which changes the volume of any subset by the same factor; so the
ratio of two volume remains unchanged, and in particular for any halfspigce
the ratio volH N K)/vol(K) is preserved under an affine transformation. Thus
Grunbaum’s theorem is implied in general.

The proof of Theorem 3 will rely on the next lemma. The function defined in the
lemma is the distribution induced by cross-sectional areas perpendicular to some
vectora.

LEMMA 4. For an isotropic convex set K and any unit vectoe R", define a
function f: R — R, as

dx

f =
(y) VOI(K) xeK,aTx=y

Then

maxf(y) < L
yeR

PrROOF. Fix a unit vectora € R". Let fx be the one-dimensional marginal
distribution

1
vol(K) xeK,aTx=y

In other words,fk (y) is the f — 1)-dimensional volume oK intersected with the
hyperplanea'x =y, as a fraction of the volume &€ . Define

fk(y) = dx.

> _ RV 2
Y = /R yic(y)dy and 1(K)= fR (v — i) fi (y)dy.
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Note thatl (K) is the variance (or moment of inertia) &f along the vectoa. By
translatingK , we can assume without loss of generality that= 0. Further, by a
rotation, we can assume theat= (1, 0, ..., 0), that is, the unit vector along.

We will, in fact, prove a slightly stronger statement: for any convex biddpr
which fg is defined as above and which satisfies

f yi(y)dy=0 and / V2 fie(y) dy = 1 )
R R

we have max fx (y) < 1.

To this end, letK be a convex body satisfying (1) for which méx(y) is the
maximum possible. We will show th#t can be assumed to be an isotropic cone.
To see this, first consider the g€t obtained by replacing each cross-sectiom
{X|x7 = y} by an f — 1)-dimensional ball of are#k (y) and centered at the point
(y,0,...,0). Clearly, the seK’ has the same volume d&&. Further, if we let
r (y) denote the radius of then (— 1)-dimensional ball ay, thenr is a concave
function. This follows from the Brunn—Minkowski inequality (Theorem 1): ltgt
be the cross-section gi, A, the cross-section at, and A the cross-section at
Ay1 + (1 — L)y, for somex € [0, 1]. Then,

VOI(A)™1 > VOI(h A1 + (1 — 4) Az)™1 = AVOI(Ag)™ + (1 — A)vol(Ag)71.

This implies that (Ay1 + (1 — A)y2) > Ar(y1) + (1 — A)r(y»), thatisr is concave.
Hence the seK’ is convex. Furtherfx: = fx and so (1) continues to be satis-
fied. So, without loss of generality, we can assume kh@ symmetric about the
X1 axis.

If K is acone, we are done. If not, Igt be a point wherd is maximum and
suppose thag* > 0 (the other case is symmetric).

Divide K into three parts:

Ki=KnN{x|x1 <0}, Ky=Kn{x[0<x;<y"}, Kz=Kn{x|xg=>y}

We will now use the following claim to simpliffK (which essentially says that
moving mass away from the center of gravity can only increase the moment
of inertia).

Claiml. Suppose as€l' is obtained from a s&t by moving mass away from
the centroid ofC or keeping it at the same distance along theaxis, that is, for
anyt > 0, vol(C' N {x : [x1] > t}) > vol(C N {x : |X1| > t}). Thenl (C") > I(C).

To prove the claim, assume that the centroidCof 0. Let the coordinate of a
pointx change fronx; to x; + g(x) whereg(x) is a real number with the same sign
asx;. Note thatEc(x;) = 0 by assumption.

1(C) = Varc/(x) = Varc(xy + 9(x))
= Ec((x1 + 9(x))*) — Ec(x1 + 9(x))?
= Varc(xq) + Varc(g(x)) + 2Ec(x19(X))
> 1(C)
sincex;g(x) > O for every pointx.
We now make the following changes to our 8etReplaceK; by a coneK; of

the same volume with base area equafit@0). ReplaceK, by a truncated cone
K of heighty*, top areafk (0) and base areék (y*). Finally, replaceKs by a
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K2

K /Kl K /Kl - .
\/ \\\ \
\\

Fic. 2. The proof of Lemma 4.

coneKj of base ared (y*) and volK;) = vol(K3) + vol(K,) — vol(K%). Let
K" = Kj U K5 U Kj be the new convex set. See Figure 2 for an illustration.

During the first step, by the claim, the moment of inertia can only increase. After
the first step, the new center of gravity along ¥a@xis can only have moved to the
left (since mass moves to the left). Thus, the next two steps also move mass away
from the center of gravity, and we can apply the claim. At the end, we get

[(K) > 1(K), vol(K)=vol(K"), maxfg(y)=maxfk/(y).

If I(K) > 1(K), then we can scale dowd’ along thex; axis and scale it up
perpendicular to the; axis, in such a way as to maintain the volume, achieve
I (K) = 1(K), and have maxg (y) > maxfk(y). This is a contradiction. Thus,
we can assume th#t has the form oK', i.e.,K; = K/.

At this point, one could perform a somewhat tedious (but routine) computation
to show that a cone of the same volumekasind base aredx (y*) has a larger
moment of inertia tharK, leading to the same contradiction unldsstself is a
cone. The following observation, again using the claim, avoids this computation.

For a pointy e [0, y*] along thex; axis, consider the subse® = {X|x; <
—-vL S ={Xl—-y <= xx <ylandS = {X|x3 > y}. Now leave the sef;
unchanged, replace the sgtby the truncated cong, with base aredk (y) and
top areafk (—y) and the sef,; by the coneS, with base aredy (—y) and volume
vol(K) —vol(S) — vol(S,), so that the total volume is unchanged. This is illustrated
in Figure 3. IfK; U K5 is not a cone, then there is some- 0 for which we can
do the above replacement. But then, by construction, we are moving mass away
from the center (mass at distance at mpatong thex; axis is moved to distance
at leasty), and so by the claim, the moment of inertia can only go up. Hence, we
can assume thd€, U K, is a cone of base areig (y*) and thusK is the union of
two cones with the same base. Now it is straightforward to check that a cone of the
same volume aK and base ared (y*) has a larger moment of inertia, andlso
itself must be a cone.

Finally, an isotropic cone has height=n + 1 %2 and volumeAh/n where
Ais the area of the base. Hence,

maxfx(y) = — D __N [N 0
Ky_Ah/n_h_n+1 n+2

Using the lemma, we can prove Theorem 3.
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Fic. 3. The proof of Lemma 4 continued.

PrROOF OFTHEOREM 3. LetK be a convex set in isotropic position anddie a
point at distanceé from its centroid. Consider a hyperplane throughith normal
vectora such thatja]] = 1. Let f be defined as in Lemma 4. By the Lemma,
max.cr f(y) < 1. Without loss of generality, assume tfadz > 0. The fraction
of the volume ofK that is cut off by the halfspace’ x > a' zis at least

[ " f(y)dy = / " f(y)dy - / "ty

Tz

a'z
é — / f(y)dy (using Theorem 2)
0

v

1
. la"z] (using Lemma 4)

%

1 1
-—lzl=- -t 0
e e

4.2. NUMBER OFITERATIONS.  The next theorem, whose proof uses Theorem 3,
is the key to bounding the number of iterations. In this section, by high probability
we mean probability higher than any fixed constant.

LEMMA 5. The volume of P drops by a factor §fwith high probability in
each iteration.

PrRoOOF.  We will prove that for any convex sk, if zis the average of sufficiently
many random samples froid, then any halfspace throughcuts off a constant
fraction of the volume oK. To this end we can assume without loss of generality
thatK is in isotropic position. This is because of two facts: (i) as shown eatrlier, any
convex set can be brought into isotropic position by an affine transformation and
(ii) on applying an affine transformatiofito K, the volume scales gei A), that
is, vol(AK) = |det( A)|vol(K); so affine transformations preserve ratios of volumes.
Letys, Vo, ..., yn be theN samples drawn uniformly frork. Let

1 N
z:N;yi.



Solving Convex Programs by Random Walks 549

Then, using the isotropy df,
E(y)=0 and E(I%l?) =n,
Thus,

n
E(2=0 and E(|z|? = N
SinceE(]|z||?) = & by choosingN = O(n), we can havejz|| smaller than any
constant. By Theorem 3, any halfspacex > a'z passing througlz cuts off at
least: — ||z|| fraction of the volume oK. We chooseN so that — ||z|| > % with
high probability. Then, any halfspace througleuts off at Ieas% of the volume
of K. [

We remark that in the proof above we only need the random samples to be
pairwise independent. This is because the only quantity we needed to bound was
the distance af from the origin for an isotropic convex set, and for this we only used
the variance oflz|. The bounds for the variance only need pairwise independence.

THEOREM 6. If the algorithm does not find a feasible pointdnL iterations,
then with high probability, the given convex set is empty.

PrROOF. The initial volume ofP is R". If the setK is nonempty, then it has
volume at least”. Thus the number of iterations in which the volume drops 8/ 2

is at most
[ R =nl R
Og% r—n =N Og% T

and thus with high probability, the total number of iterations is at most 2 []

4.3. A BETTER BOUND FOR LINEAR PROGRAMMING. For the case of linear
programming, when the target convex &eis a polyhedron defined by linear
inequalities, a smaller number of samples can be used in each iteration. The next
lemma proves that any single violated inequality is detected with high probability.
The main idea is that since the separation oracle will simply return one ofhanly
hyperplanes in case of a violation, one can apply the “union bound” to show that
with high probability a small sample will detect a violation. This is in contrast to
the general case where the separation oracle might return one of infinitely many
possibilities.

LEMMA 7. Let K be a convex set and z be the average of N random samples
from K. Let a be a fixed unit vector. Then the probability that the halfspaze<a

a' z cuts off at Ieas% of K is at leastl — 2-<¥N for some constant c.
PrROOF  Assume without loss of generality thBtis in isotropic position. Let

Y, = a'y, fori = 1,..., N. Then,Y;’s are independent random variables with
distribution given by the logconcave function
1
f(y) = dx

VOI(K) xeK,alx=y
We have
E(Y)=0 and E(Y) =1
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Let
1 N
Z=a'z=— ZY‘
N i=1
Then,
1
E(Z)=0 and E(Z% = N

Now the distribution ofZ is the convolution of the distributions of thé’s and
is also logconcave [Prekopa 1973]. Thus, there is a conftanich that for any
t>1,

P <|Z| > j—ﬁ) < exp(-Dt).

As a consequence, fof > 1/c?,
Pr(ja"z| > c) < exp(~cD+/N).

By choosingc small enough, we get that the halfspacex < a'z cuts off at least
1 of the volume ofP with probability at least - exp(—c’'v/N) for some abso-
lute constant’. [

COROLLARY 8. Let the target convex set be the intersection of m halfspaces.
Then with N= O(log® m), the volume of P drops by a factoréin each iteration
with high probability.

PROOF.  As in the proof of Lemma 5, leyy, ..., yn be random variables de-
noting the samples from the current polytopeand letz be their average. In
Lemma 5, we showed that f@any unit vectora, the hyperplane normal @ and
passing throughis likely to cut off at Ieas% of the volume ofP. Suppose that the
target seK is the intersection ah halfspaces defined by hyperplanes with normal
vectorsay, ..., an (with ||a || = 1). Then, we only need to show that each of the
hyperplanegx = a'z cuts off at least; of P. This is because the separation
oracle for the target convex set (which simply checkathalfspaces and reports
one that is violated) will return a hyperplane parallel to one of these.

By Lemma 7, any single halfspaeéx < a'z cuts off2 of P with probability
at least 1— 2-°VN for some constant. SettingN = O(log? m) implies that with
high probability any one ofn halfspaces will cut off a constant fraction Bf [J

5. Sampling and Isotropy

In each iteration, we need to sample the current polytope. For this we take a random
walk. There are many ways to walk randomly but the two ways with the best bounds
on themixing timeare the ball walk and hit-and-run. They are both easy to describe.

Ball walk

(1) Choosey uniformly at random from the ball of radidscentered at the current
point x.

(2) If yis in the convex set then move yif not, try again.
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Hit-and-run

(1) Choose a liné through the current point uniformly at random.
(2) Move to a pointy chosen uniformly fronK N £.

The mixing time of the walk depends on how close the convex set is to being
in isotropic position (recall Definition 2). In addition to isotropy, the starting point
(or distribution) of a random walk plays a role in the bounds on the mixing time.
The best bounds available are fowarm start—a starting distribution is already
close to the stationary distribution. The total variation distance between two
distributionso andz with supportK is defined as:

llo — 7|l = suplo(A) — m(A)l.
ACK

The following result is paraphrased from LasZ [1998].

THEOREM9 (LOVASz 1998). Let K be a near-isotropic convex set,be any
distribution on it with the property that for any set S witiS) < ¢, we haver (S) <
10e. Then afterSZ(Q—z log %) steps of hit-and-run starting at, the distribution
obtained has total variation distance less thafifom the uniform distribution.

A similar statement holds for ball walk with step size= ©(-%) (see Kannan
and Lowdsz [1999]). One advantage of hit-and-run is that there is no need to choose
the “step size’s.

The problem with applying this directly in our algorithm to the current polytope
P is that after some iteration® may not be in near-isotropic position. One way
to maintain isotropic position is by using random samples to calculate an affine
transformation. It was proven in Kannan et al. [1997] that for any convex set,
O(n?) samples allow us to find an affine transformation that brings the set into
near-isotropic position. This was subsequently improve@@olog? n) [Rudelson
1999]. The procedure for a general convexlsds straightforward:

(1) Letys, Yo, ..., yn be random samples frol.
(2) Compute

_ 1 ¢ 18
Y=g and Y=23 (i =0 -9 )
i=1 i=1

The analysis of this procedure rests on the following consequence of a more general
lemma due to Rudelson [1999].

LEMMA 10 (RUDELSON1999). Let K be aconvex bodyR" inisotropic posi-
tionandny > 0. Lety, ..., yn be independent random points uniformly distributed
in K, with

np

N=>c— Iogﬂ2 max{ p, logn}.
n n

where c is a fixed absolute constant and p is any positive integer. Then

1 P
E(ﬁZYiyiT—l )S’?p-
i=1
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COROLLARY 11. Let K be a convex set ang and Y be defined as if2).

There is an absolute constant ¢ such that for any integer pl, and N >

cpnlognmax{p, logn}, with probability at leastl. — Zp—l,l the set

K'=[X|Y2X + ¥ € K}
is in near-isotropic position.

PrOOF  Without loss of generality, we can assume tKais in isotropic posi-
tion. Let

Ien, 1
Yo= 17D v
i=1
Then, applying Lemma 10, we have
E(IYo—1P) < nP.

Hence,
Pr(IYo— 11l > 2n) = Pr([IYo— 11" > (29)P)
_qp
< E[II'Yo — 1?]
(2n)P
1
< —.
= %

NowY =Yg —yy',andso|Y — ||| < |Yo— I || + |lyll?>. The random variablg
has a logconcave distribution a&q| y||?) = n/N. So, there is a constait such

that for anyt > 1,
7 /n Dt
Pr (||y||>t N)fe .

Usingn = 1/8 andt = \/N/4n, we get that withN > cpnlognmaxp, logn}
points (this is a different constaofrom that in Lemma 10),

1 1

Next, we evaluate max" Y vand minv' Y v over unit vectory.
VIYV = viIv+vi(Y —I)v
<14+ Y-=1].

VIYVv=vTlv+vi(Y —I)
>1-Y =1l

Thus, with probability - 52, vTY vis betweer} and3 for any unit vectow, and
soK' is in near-isotropic position.[]

In fact, usingN = O*(n) points, the probability of failure in each iteration can
be made so low (inverse polynomial) that the probability of failure over the entire
course of the algorithm is smaller than any fixed constant. In order to keep the
sampling efficient, we calculate such an affine transformation in each iteration,
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using samples from the previous iteration. However, we do not need to apply the
transformation to the current polytofe Instead, we could keeP as it is and use
the following modified random walk: From a poixt

(1) Choose a poiny uniformly at random fronx + 8Y2B,.
(2) If yisin the convex set, then move yoif not, try again.

A similar modification (choose the liné from Y:B, rather thanB,) can be
made to hit-and-run also. In this article, we do not deal with the technical difficul-
ties caused by near-uniform sampling of nearly independent points. For a detailed
discussion of those issues, the reader is referred to Kannan et al. [1997].

THEOREM 12. Each iteration of the algorithm can be implemented (i)
steps of a random walk in P.

PrROOF.  Our initial convex set, the cube, is in isotropic position and it is easy to
sample fromit. Given awarm startin a current polyté&pi@ near-isotropic position,
we takeO*(n®N) steps of a random walk to geN2nearly random samples (using
Theorem 9). We compute the averagef N of these, and i is not in the target
convex set, then we refirf@ with a new halfspaceél to getP’. Of the remaining\
points, at least a constant fraction (s%e)yare in P’ with high probability. Further,
their distribution is nearly uniform oveP’. Using these points, we estimate
by the formula of Corollary 11. With high probability this is a nonsingular matrix.
By Corollary 11, we only nee®l = O*(n) samples in each iteration. The reason
for discarding the subset of samples used in computing the average is to avoid
correlations with future samples(]

5.1. AN ISOTROPICVARIANT. Here we describe an alternative method which
implicitly maintains isotropy. It has the advantage of completely avoiding the com-

putation of the linear transformatiore.
Instead of walking with a single point, consider the followimgltipointwalk:
Maintainm pointsvy, Vo, ..., Vy. Foreachj =1,..., m,

(1) Choose a directiofh = Y, &;jV; whereay, . .., am are drawn independently
from the standard normal distribution.

(2) Movev; to arandom point irK along<.

THEOREM 13. Suppose the multipoint walk is started with #m ©(nlog?n)
points drawn from a distribution that satisfies (S) < 10¢ for any subset S with
7(S) < €. Then their joint distribution aftef2(mZ; log %) steps has total variation
distance less tham from the distribution obtained by picking m random points
uniformly and independently from.

ProoOF The random walk described above is invariant under affine transfor-
mations, meaning there is a one-to-one map betweeen a willaimd a walk in an
affine transformation oK ; hence we can assume th@is isotropic. Now consider
a slightly different walk where we keep points, pick one and make a standard hit-
and-run step, that is, the direction is chosen uniformly. The corresponding Markov
chain has states for eaatrtuple of points fromK, and since each point is walk-
ing independently, it follows from Theorem 9 that the chain has the bound descri-
bed above.
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Compare this to the Markov chain for our random walk. The stationary distribu-
tion is the same (our Markov chain is symmetric). The main observation is that for
V1, ..., Vn picked at random anch = ©(nlog?n), Corollary 11 imples that with
high probability, the matrix of inertia has eigenvalues bounded by constants from
above and below. We can choaseso that this probability is + n—%o Thus, for all
but a% fraction of states, the probability of each single transition of our Markov
chain is within a constant factor of the first Markov chain. So the conductance of
any subset of probability greater thﬁgw (say) is within a constant factor of its
conductance in the first chain. Since we start out with a warm distribution (i.e., a
large subset), this implies the bound on the mixing tirrel.

Thus, the entire convex programming algorithm now consists of the following:
We maintain 2N random points in the current polytoge We useN of them to
generate the query point and refiRe Among the rest, we keep those that remain
in P, and continue to walk randomly as described above till we h&veghdom
points again.

6. A Generalization

In this section, we consider the problem of optimization over a convex set given by
aweaker oracle, namely a membership oracle. bt€ghiel et al. [1988], it is shown
that this is indeed possible using a sophisticated variant of the ellipsoid algorithm,
provided we have aenterecconvex seK. That is, in addition to the membership
oracle, we are given a poigte K, and a guarantee that a ball of radiuground

y is contained irK . The algorithm and proof there are quite nice but intricate.

Our algorithm provides a solution for a more general probl&nis the inter-
section of two convex set§; andK,. We are given a separation oracle #r, a
membership oracle fdf, and a point irK,. The problem is to minimize a convex
function overK.

THEOREM 14. Let K = K1 N K, where K is given by a separation oracle
and K, by a membership oracle. Let R be the radius of an origin-centered ball
containing K. Then, given a pointg K, such that the ball of radius r around y
is contained in kK (i.e., K is centered), the optimization problem over K can be
solved in time polynomial in n arldg 5.

PROOF. It is clear that optimization is reducible to feasibility, that is, we just
need to find a point in K or declare thaK is empty. We start withP asKj inter-
sected with the ball of radiusRwith centery and apply our algorithm. The key
procedure, a random walk B, needs a point if? and a membership oracle fér,
both of which we have initially and at each iteration. Us@(n) samples we can
bring P into near-isotropic position. Also, each subsequent query pagrguaran-
teed to be irK,, since it is the average of points frafs. Thus, the algorithm needs
at mostO(nlog TR) iterations andO(nlog ) calls to the separation oracle fisn.
Each iteration (after the first) makes(n*) calls to the membership oracle fp.

To bring the initial setP into isotropic position, we can adapt the “chain of
bodies” procedure of Kannan et al. [1997]. Sirkgis centered, it contains a ball

2]t is not known whether Vaidya’s algorithm can be extended to solve this problem.
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of radiusr aroundy. Scale up so thay + r B, is in isotropic position and call it
Q (just for convenience; this has the effect of scalingRiplso). Now consider
Q' = PN (y+ 2rrB,), thatis,K, intersected with the ball of radiu$’2r around
y. The volume ofQ’ is at most twice the volume d@. This is because

Q =PN(y+2irB,) C2i(PN(y+rBy)=2Q.

Thus, a uniform sample fron® provides a warm start for sampling froQ'.
Sample fromQ’, drawing each sample ipoly(n) time and use the samples to
calculate an affine transformation that would @itin isotropic position. Apply
the transformation td®. ResetQ to be the transforme®’, y to be its center of
gravity andr to be the radius of the ball arouyctontainingQ. Again letQ’ be the
intersection ofP with the ball of radius 2"r aroundy. After at mostO(n log TR)
such phased? will be in near-isotropic position.

7. Extensions

The methods of this article suggest the followintgrior point algorithm for op-
timization. Suppose we want to maximizéx over a full-dimensional convex set
K. We start with a feasible solutian in K. Then add the constrainf x > ¢z
and letk := K N {x | c"x > cTz}. Next we generat& random pointsy; in the
setK and letz, be their average. "z, — c"z, < €, we stop; otherwise, we set
K := KnN{x|c"x > c"z}, and continue.

The algorithms seems to merit empirical evaluation; in practice, it might be pos-
sible to sample more efficiently than the known worst-case bounds. The algorithm
also presents a strong motivation to find geometric random walks that mix faster.
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