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Abstract. Minimizing a convex function over a convex set inn-dimensional space is a basic, general
problem with many interesting special cases. Here, we present a simple new algorithm for convex
optimization based on sampling by a random walk. It extends naturally to minimizing quasi-convex
functions and to other generalizations.
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1. Introduction

The problem of minimizing a convex function over a convex set inRn is a common
generalization of well-known geometric optimization problems such as linear pro-
gramming as well as a variety of combinatorial optimization problems including
matchings, flows and matroid intersection, all of which have polynomial-time algo-
rithms. As such, it represents a frontier of polynomial-time solvability and occupies
a central place in the theory of algorithms.

In his groundbreaking work, Khachiyan [1979] showed that the Ellipsoid method
[Yudin and Nemirovski 1976] solves linear programs in polynomial time. Subse-
quently, Karp and Papadimitriou [1982], Padberg and Rao [1981], and Gr¨otschel
et al. [1981] independently discovered the wide applicability of the Ellipsoid method
to combinatorial optimization problems. This culminated in the book by the last set
of authors [Gr¨otschel et al. 1988], in which it is shown that the Ellipsoid method
solves the problem of minimizing a convex function over a convex set inRn spec-
ified by aseparation oracle, that is, a procedure that given a pointx, either reports
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that the set containsx or returns a halfspace that separates the set fromx. For the
special case of linear programming, the oracle simply checks if the query point
satisfies all the constraints of the linear program, and if not, reports a violated
constraint; another well-known special case issemidefiniteprogramming. Vaidya
[1996] improved the complexity via a more sophisticated algorithm.

In this article, we present a simple new algorithm for the problem, based on
random sampling. Its complexity is optimal in terms of the number of oracle queries,
but the overall running time can be higher than that of previous algorithms (see
Table I at the end of Section 2 for a precise comparison). The key component of
the algorithm is sampling a convex set by a random walk. Random walks have
long been studied for their mathematical appeal, but of late they have also played a
crucial role in the discovery of polynomial-time algorithms. Notable applications
include estimating the volume of a convex set [Dyer et al. 1991] and computing the
permanent of a nonnegative matrix [Jerrum et al. 2001]. They have also been used in
machine learning and online algorithms [Kalai and Vempala 2002]. Our algorithm
is a novel application of random walks to the field of optimization (for an earlier
application, see Kannan et al. [1995]). For the analysis, we prove a generalization
of Grunbaum’s theorem [Grunbaum 1960] about cutting convex sets (see Section
4.1); this might be of interest in other settings.

So far, we have assumed that the convex set of interest has an efficient separation
oracle. A natural question is whether optimization can be solved using a significantly
weaker oracle, namely amembershiporacle (which reports whether a query point
is in the set or not, but provides no other information). One of the main results in
Grötschel et al. [1988] is that a linear function can be optimized over a convex set
K given only by a membership oracle, providedK is “centered”, that is, we are also
given a pointy and a guarantee that a ball of some radiusr aroundy is contained in
K . The algorithm is intricate and involves a sophisticated variant of the Ellipsoid
method, called theshallow-cutEllipsoid (note that feasibility is trivial since we are
given a feasible point). Our algorithm provides a simple solution to this problem.
In fact, as we show in Section 6, it solves the following generalization: letK be
the intersection of two convex setsK1 andK2, whereK1 is a “centered” convex set
with a membership oracle andK2 is a convex set with a separation oracle; find a
point in K if one exists. The generalization includes the special case of minimizing
a quasi-convex function over a centered convex set given by a membership oracle.
This problem (and its special case mentioned above) are not known to be solvable
using the Ellipsoid method or Vaidya’s algorithm.

2. The Algorithm

In this section, we present an algorithm for thefeasibilityproblem: find a point in a
given convex set specified by a separation oracle. This can be used to minimize any
quasi-convexfunction. A function f : Rn → R is called quasi-convex if, for any
real numbert , the set{x ∈ Rn | f (x) ≤ t} is convex. Note that any convex function
is also quasi-convex. The problem of minimizing a quasi-convex function is easily
reduced to the feasibility problem: to minimize a quasi-convex functionf (x), we
simply add the constraintf (x) ≤ t and search (in a binary fashion) for the optimalt .

In the description below, we assume that the convex setK is contained in the
axis-aligned cube of widthRcentered at the origin; further ifK is nonempty then it
contains a cube of widthr (see, e.g., Bertsimas and Tsitsiklis [1997] and Gr¨otschel
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FIG. 1. An illustration of the algorithm.

et al. [1988] for a justification). The choice of cubes here is somewhat arbitrary;
we could instead use balls, for example. The parameterL is equal to logR

r .

Algorithm.
Input : A separation oracle for a convex set K and a number L.
Output: A point in K or a guarantee that K is empty.

1. Let P be the axis-aligned cube of width R with center z= 0.
2. Check if z is in K. If so then report z and stop. If not, then let aT x ≤ b

be the halfspace containing K reported by the oracle. Set H = {x | aT x ≤
aT z}.

3. Set P = P ∩ H. Pick N random points y1, y2, . . . , yN from P. Set z to be their

average: z= 1
N

∑N
i=1 yi .

4. Repeat steps 2 and 3 at most 2nL times. Report K is empty.

Roughly speaking, the algorithm (see Figure 1 for an illustration) is computing
an approximate centroid in each iteration.1 The number of samples required in
each iteration,N, is O(n) for an arbitrary convex set inRn andO(log2 m) if K is
a polyhedron withm inequalities (i.e., a linear program).

The idea behind the algorithm is that the volume of the enclosing polytopeP is
likely to drop by a constant factor in each iteration. We prove this in Section 4.2
(see Lemma 5) and derive as a consequence that if the algorithm does not stop in
2nL iterations, thenK must be empty with high probability (Theorem 6). Thus,
the total number of calls to the separation oracle is at most 2nL. This matches
the (asymptotic) bound for Vaidya’s algorithm, and is in general the best possible
[Yudin and Nemirovski 1976]. The Ellipsoid algorithm, in contrast, takesO(n2L)
iterations and as many calls to the oracle.

1The idea of an algorithm based on computing theexactcentroid was suggested in 1965 by Y. Levin
[Levin 1965], but is computationally intractable.
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TABLE I. COMPLEXITY COMPARISON

Optimization/Feasibility Optimization with a
Algorithm with a Separation oracle Membership oracle
Ellipsoid O(n2LT + n4L) O(n10LT + n12L)
Vaidya’s O(nLT + n3.38L) N/A
Random walk O(nLT + n7L) O(n5LT + n7L)

Each iteration of our algorithm uses random samples from the current polytope
P. The time per iteration depends on how quickly we can draw random samples
from P. The problem of sampling from a convex set has received much attention
in recent years [Dyer et al. 1991; Lov´asz and Simonovits 1993; Kannan et al. 1997;
Lovász 1998; Kannan and Lov´asz 1999], in part because it is the only known way
of efficiently estimating the volume of a convex set. The general idea is to take a
random walk in the set. There are many ways to walk randomly; of these, theball
walk (go to a random point within a small distance) [Kannan and Lov´asz 1999] and
hit-and-run(go to a random point along a random direction) [Lov´asz 1998] have
the best known bounds on the number of steps needed to draw a random sample.
The bounds on the number of steps depend on how “round” the convex set is. For
a set that is close toisotropic position(see Section 4),O(n3) steps are enough to
get one nearly random point from a “good” starting distribution. In our case, the
initial convex set, the cube, is indeed in isotropic position. However, this might not
be the case after some iterations. As we describe in Section 5, this problem can
be tackled by computing an affine transformation that keeps the current polytope
P in near-isotropic position. We also propose an alternative (in Section 5.1) that
avoids this computation and instead incorporates the information about isotropy
implicitly in the steps of a random walk by maintaining a set of points. The time per
iteration of the algorithm is bounded byO(n4) steps of a random walk. Each step of
the walk takesO(n2) arithmetic operations to implement, and hence the algorithm
takesO(n6) arithmetic operations per iteration in addition to one oracle call.

In Section 6, we describe a variant of the algorithm for optimization when we
are given a membership oracle. We conclude this section with a comparison of the
complexities of the three algorithms given a separation oracle or given a membership
oracle. The parameterT denotes the time taken by the relevant oracle to answer
a query.

In practice, drawing random samples from convex sets might be much faster than
the known worst-case bounds; also, sampling convex sets is an active research area
and there might well be faster sampling methods in the future that would directly
improve the complexity of the random walk algorithm.

3. Preliminaries

The following definitions will be useful throughout the analysis. We assume that
all our convex sets are closed and bounded.

Definition 1. A convex setK inRn is said to be inisotropic positionif its center
of gravity is the origin, that is, for a random pointx in K ,

EK (x) = 0
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and its covariance matrix is the identity, that is,

EK (xxT ) = I .

Equivalently, for any unit vectorv (‖v‖ = 1),

1

vol(K )

∫
K

(vT x)2dx= 1.

In other words, for a setK in isotropic position, the average squared length in any
direction is 1. In particular, this implies that

1

vol(K )

∫
K
‖x‖2dx= n.

For any full-dimensional convex set, there exists an affine transformation that puts
the set in isotropic position. To bring a convex setK with center of gravityz into
isotropic position, letA = EK ((x − z)(x − z)T ) be its covariance matrix. SinceK
is full-dimensional,A is positive definite, and so there exists a matrixB such that
B2 = A−1. Now define the transformationK ′ = {y : y = B(x− z), x ∈ K }. Then
EK ′(y) = 0 andEK ′(yyT ) = I .

Definition 2. We say that a convex setK is in near-isotropicposition if for any
unit vectorv,

1

2
≤ 1

vol(K )

∫
K

(vT (x − x̄))2dx≤ 3

2

wherex̄ is the centroid ofK . Equivalently, the covariance matrix of the uniform
distribution overK has eigenvalues between1

2 and 3
2.

TheMinkowski sumof two setsA, B in Rn is defined as

A+ B = {y+ z | y ∈ A, z ∈ B}.
For example, the Minkowski sum,x+ r B, of a pointx and a ballr B of radiusr is
the ball of radiusr centered atx.

The following theorem is known as the Brunn–Minkowski inequality (see, e.g.,
Gardner [2002] and Schneider [1993]).

THEOREM 1. Let A and B be full-dimensional convex subsets ofRn. Then for
anyλ ∈ [0, 1],

vol(λA+ (1− λ)B)
1
n ≥ λvol(A)

1
n + (1− λ)vol(B)

1
n .

Some of our proofs utilize logconcave functions, which we introduce next.

Definition 3. A function f : Rn → R+ is logconcaveiff for any two points
a, b ∈ Rn and anyλ ∈ (0, 1),

f (λa+ (1− λ)b) ≥ f (a)λ f (b)1−λ.

In other words, a nonnegative functionf is logconcave if its support is convex
and log f is concave. For example, a function that is constant over a bounded convex
set and zero outside the set is logconcave. Another example is a Gaussian density
function. It can be easily verified from the definition above that the product of two
logconcave functions is also logconcave (but their sum is not).
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Finally, we will use the following simple fact from linear algebra. When we
apply a linear transformationA to a compact convex setK , then the volume of the
resulting setAK is |det(A)|vol(K ).

4. Analysis

In this section, we prove that with high probability, the algorithm needs onlyO(n)
random points per iteration andO(nL) iterations. Section 5 describes how to effi-
ciently obtain the random points in each iteration.

4.1. GEOMETRIC PROPERTIES. The following theorem was proved by
Grunbaum.

THEOREM2 (GRUNBAUM 1960). For a convex set K inRn, any halfspace that
contains the centroid of K also contains at least1/e of the volume of K .

Here, we prove a generalization.

THEOREM 3. Let K be a convex set in isotropic position and z be a point at
distance t from its centroid. Then any halfspace containing z also contains at least
1
e − t of the volume of K .

Theorem 3 witht = 0 clearly implies Grunbaum’s theorem for isotropic convex
sets. Further, any convex setK can be mapped to an isotropic one by an affine
transformation which changes the volume of any subset by the same factor; so the
ratio of two volume remains unchanged, and in particular for any halfspaceH ,
the ratio vol(H ∩ K )/vol(K ) is preserved under an affine transformation. Thus
Grunbaum’s theorem is implied in general.

The proof of Theorem 3 will rely on the next lemma. The function defined in the
lemma is the distribution induced by cross-sectional areas perpendicular to some
vectora.

LEMMA 4. For an isotropic convex set K and any unit vector a∈ Rn, define a
function f : R→ R+ as

f (y) = 1

vol(K )

∫
x∈K ,aT x=y

dx.

Then

max
y∈R

f (y) < 1.

PROOF. Fix a unit vectora ∈ Rn. Let fK be the one-dimensional marginal
distribution

fK (y) = 1

vol(K )

∫
x∈K ,aT x=y

dx.

In other words,fK (y) is the (n− 1)-dimensional volume ofK intersected with the
hyperplaneaT x = y, as a fraction of the volume ofK . Define

ȳK =
∫
R

y fK (y) dy and I (K ) =
∫
R
(y− ȳK )2 fK (y)dy.
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Note thatI (K ) is the variance (or moment of inertia) ofK along the vectora. By
translatingK , we can assume without loss of generality thatȳK = 0. Further, by a
rotation, we can assume thata = (1, 0, . . . ,0), that is, the unit vector alongx1.

We will, in fact, prove a slightly stronger statement: for any convex bodyK for
which fK is defined as above and which satisfies∫

R
y fK (y) dy= 0 and

∫
R

y2 fK (y) dy= 1, (1)

we have maxR fK (y) < 1.
To this end, letK be a convex body satisfying (1) for which maxfK (y) is the

maximum possible. We will show thatK can be assumed to be an isotropic cone.
To see this, first consider the setK ′ obtained by replacing each cross-sectionK ∩
{x|x1 = y} by an (n− 1)-dimensional ball of areafK (y) and centered at the point
(y, 0, . . . ,0). Clearly, the setK ′ has the same volume asK . Further, if we let
r (y) denote the radius of the (n − 1)-dimensional ball aty, thenr is a concave
function. This follows from the Brunn–Minkowski inequality (Theorem 1): LetA1
be the cross-section aty1, A2 the cross-section aty2 and A the cross-section at
λy1+ (1− λ)y2 for someλ ∈ [0, 1]. Then,

vol(A)
1

n−1 ≥ vol(λA1+ (1− λ)A2)
1

n−1 ≥ λvol(A1)
1

n−1 + (1− λ)vol(A2)
1

n−1 .

This implies thatr (λy1+ (1− λ)y2) ≥ λr (y1)+ (1− λ)r (y2), that is,r is concave.
Hence the setK ′ is convex. Further,fK ′ = fK and so (1) continues to be satis-
fied. So, without loss of generality, we can assume thatK is symmetric about the
x1 axis.

If K is a cone, we are done. If not, lety∗ be a point wherefK is maximum and
suppose thaty∗ ≥ 0 (the other case is symmetric).

Divide K into three parts:

K1 = K ∩ {x|x1 ≤ 0}, K2 = K ∩ {x|0≤ x1 ≤ y∗}, K3 = K ∩ {x|x1 ≥ y∗}.
We will now use the following claim to simplifyK (which essentially says that
moving mass away from the center of gravity can only increase the moment
of inertia).

Claim1. Suppose a setC′ is obtained from a setC by moving mass away from
the centroid ofC or keeping it at the same distance along thex1 axis, that is, for
anyt ≥ 0, vol(C′ ∩ {x : |x1| ≥ t}) ≥ vol(C ∩ {x : |x1| ≥ t}). ThenI (C′) ≥ I (C).

To prove the claim, assume that the centroid ofC is 0. Let the coordinate of a
pointx change fromx1 to x1+g(x) whereg(x) is a real number with the same sign
asx1. Note thatEC(x1) = 0 by assumption.

I (C′) = VarC′(x1) = VarC(x1+ g(x))
= EC((x1+ g(x))2)− EC(x1+ g(x))2

= VarC(x1)+ VarC(g(x))+ 2EC(x1g(x))
≥ I (C)

sincex1g(x) ≥ 0 for every pointx.
We now make the following changes to our setK . ReplaceK1 by a coneK ′1 of

the same volume with base area equal tofK (0). ReplaceK2 by a truncated cone
K ′2 of height y∗, top area fK (0) and base areafK (y∗). Finally, replaceK3 by a
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FIG. 2. The proof of Lemma 4.

coneK ′3 of base areafK (y∗) and vol(K ′3) = vol(K3) + vol(K2) − vol(K ′2). Let
K ′ = K ′1 ∪ K ′2 ∪ K ′3 be the new convex set. See Figure 2 for an illustration.

During the first step, by the claim, the moment of inertia can only increase. After
the first step, the new center of gravity along thex1 axis can only have moved to the
left (since mass moves to the left). Thus, the next two steps also move mass away
from the center of gravity, and we can apply the claim. At the end, we get

I (K ′) ≥ I (K ), vol(K ) = vol(K ′), max fK (y) = max fK ′(y).

If I (K ′) > I (K ), then we can scale downK ′ along thex1 axis and scale it up
perpendicular to thex1 axis, in such a way as to maintain the volume, achieve
I (K ′) = I (K ), and have maxfK ′(y) > max fK (y). This is a contradiction. Thus,
we can assume thatK has the form ofK ′, i.e., Ki = K ′i .

At this point, one could perform a somewhat tedious (but routine) computation
to show that a cone of the same volume asK and base areafK (y∗) has a larger
moment of inertia thanK , leading to the same contradiction unlessK itself is a
cone. The following observation, again using the claim, avoids this computation.

For a pointy ∈ [0, y∗] along thex1 axis, consider the subsetsS1 = {x|x1 ≤
−y}, S2 = {x| − y ≤ x1 ≤ y} and S3 = {x|x1 ≥ y}. Now leave the setS3
unchanged, replace the setS2 by the truncated coneS′2 with base areafK (y) and
top areafK (−y) and the setS1 by the coneS′1 with base areafK (−y) and volume
vol(K )−vol(S3)−vol(S′2), so that the total volume is unchanged. This is illustrated
in Figure 3. If K1 ∪ K2 is not a cone, then there is somey > 0 for which we can
do the above replacement. But then, by construction, we are moving mass away
from the center (mass at distance at mosty along thex1 axis is moved to distance
at leasty), and so by the claim, the moment of inertia can only go up. Hence, we
can assume thatK1 ∪ K2 is a cone of base areafK (y∗) and thusK is the union of
two cones with the same base. Now it is straightforward to check that a cone of the
same volume asK and base areafK (y∗) has a larger moment of inertia, and soK
itself must be a cone.

Finally, an isotropic cone has heighth = n+ 1
√

n+2
n and volumeAh/n where

A is the area of the base. Hence,

max fK (y) = A

Ah/n
= n

h
= n

n+ 1

√
n

n+ 2
.

Using the lemma, we can prove Theorem 3.
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FIG. 3. The proof of Lemma 4 continued.

PROOF OFTHEOREM3. LetK be a convex set in isotropic position and letz be a
point at distancet from its centroid. Consider a hyperplane throughz with normal
vectora such that‖a‖ = 1. Let f be defined as in Lemma 4. By the Lemma,
maxy∈R f (y) < 1. Without loss of generality, assume thataT z ≥ 0. The fraction
of the volume ofK that is cut off by the halfspaceaT x ≥ aT z is at least∫ ∞

aT z
f (y)dy =

∫ ∞
0

f (y)dy−
∫ aT z

0
f (y)dy

≥ 1

e
−
∫ aT z

0
f (y)dy (using Theorem 2)

≥ 1

e
− |aT z| (using Lemma 4)

≥ 1

e
− ‖z‖ = 1

e
− t.

4.2. NUMBER OFITERATIONS. The next theorem, whose proof uses Theorem 3,
is the key to bounding the number of iterations. In this section, by high probability
we mean probability higher than any fixed constant.

LEMMA 5. The volume of P drops by a factor of2
3 with high probability in

each iteration.

PROOF. We will prove that for any convex setK , if z is the average of sufficiently
many random samples fromK , then any halfspace throughz cuts off a constant
fraction of the volume ofK . To this end we can assume without loss of generality
thatK is in isotropic position. This is because of two facts: (i) as shown earlier, any
convex set can be brought into isotropic position by an affine transformation and
(ii) on applying an affine transformationA to K , the volume scales bydet(A), that
is, vol(AK) = |det(A)|vol(K ); so affine transformations preserve ratios of volumes.
Let y1, y2, . . . , yN be theN samples drawn uniformly fromK . Let

z= 1

N

N∑
i=1

yi .
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Then, using the isotropy ofK ,

E(yi ) = 0 and E(‖yi ‖2) = n.

Thus,

E(z) = 0 and E(‖z‖2) = n

N
.

SinceE(‖z‖2) = n
N by choosingN = O(n), we can have‖z‖ smaller than any

constant. By Theorem 3, any halfspaceaT x ≥ aT z passing throughz cuts off at
least1

e − ‖z‖ fraction of the volume ofK . We chooseN so that1e − ‖z‖ ≥ 1
3 with

high probability. Then, any halfspace throughz cuts off at least13 of the volume
of K .

We remark that in the proof above we only need the random samples to be
pairwise independent. This is because the only quantity we needed to bound was
the distance ofz from the origin for an isotropic convex set, and for this we only used
the variance of‖z‖. The bounds for the variance only need pairwise independence.

THEOREM 6. If the algorithm does not find a feasible point in2nL iterations,
then with high probability, the given convex set is empty.

PROOF. The initial volume ofP is Rn. If the setK is nonempty, then it has
volume at leastr n. Thus the number of iterations in which the volume drops by 2/3
is at most

log3
2

(
Rn

r n

)
= n log3

2

R

r

and thus with high probability, the total number of iterations is at most 2nL.

4.3. A BETTER BOUND FOR LINEAR PROGRAMMING. For the case of linear
programming, when the target convex setK is a polyhedron defined bym linear
inequalities, a smaller number of samples can be used in each iteration. The next
lemma proves that any single violated inequality is detected with high probability.
The main idea is that since the separation oracle will simply return one of onlym
hyperplanes in case of a violation, one can apply the “union bound” to show that
with high probability a small sample will detect a violation. This is in contrast to
the general case where the separation oracle might return one of infinitely many
possibilities.

LEMMA 7. Let K be a convex set and z be the average of N random samples
from K. Let a be a fixed unit vector. Then the probability that the halfspace aT x ≤
aT z cuts off at least13 of K is at least1− 2−c

√
N for some constant c.

PROOF. Assume without loss of generality thatP is in isotropic position. Let
Yi = aT yi for i = 1, . . . , N. Then,Yi ’s are independent random variables with
distribution given by the logconcave function

f (y) = 1

vol(K )

∫
x∈K ,aT x=y

dx.

We have

E(Yi ) = 0 and E(Y2
i ) = 1.
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Let

Z = aT z= 1

N

N∑
i=1

Yi .

Then,

E(Z) = 0 and E(Z2) = 1

N
.

Now the distribution ofZ is the convolution of the distributions of theYi ’s and
is also logconcave [Prekopa 1973]. Thus, there is a constantD such that for any
t ≥ 1,

P

(
|Z| > t√

N

)
≤ exp(−Dt).

As a consequence, forN > 1/c2,

Pr (|aT z| > c) ≤ exp(−cD
√

N).

By choosingc small enough, we get that the halfspaceaT x ≤ aT z cuts off at least
1
3 of the volume ofP with probability at least 1− exp(−c′

√
N) for some abso-

lute constantc′.

COROLLARY 8. Let the target convex set be the intersection of m halfspaces.
Then with N= O(log2 m), the volume of P drops by a factor of2

3 in each iteration
with high probability.

PROOF. As in the proof of Lemma 5, lety1, . . . , yN be random variables de-
noting the samples from the current polytopeP and letz be their average. In
Lemma 5, we showed that foranyunit vectora, the hyperplane normal toa and
passing throughz is likely to cut off at least13 of the volume ofP. Suppose that the
target setK is the intersection ofm halfspaces defined by hyperplanes with normal
vectorsa1, . . . ,am (with ‖ai ‖ = 1). Then, we only need to show that each of the
hyperplanesaT

i x = aT
i z cuts off at least13 of P. This is because the separation

oracle for the target convex set (which simply checks them halfspaces and reports
one that is violated) will return a hyperplane parallel to one of these.

By Lemma 7, any single halfspaceaT x ≤ aT z cuts off 1
3 of P with probability

at least 1− 2−c
√

N for some constantc. SettingN = O(log2 m) implies that with
high probability any one ofm halfspaces will cut off a constant fraction ofP.

5. Sampling and Isotropy

In each iteration, we need to sample the current polytope. For this we take a random
walk. There are many ways to walk randomly but the two ways with the best bounds
on themixing timeare the ball walk and hit-and-run. They are both easy to describe.

Ball walk

(1) Choosey uniformly at random from the ball of radiusδ centered at the current
point x.

(2) If y is in the convex set then move toy; if not, try again.
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Hit-and-run

(1) Choose a linè through the current pointx uniformly at random.
(2) Move to a pointy chosen uniformly fromK ∩ `.

The mixing time of the walk depends on how close the convex set is to being
in isotropic position (recall Definition 2). In addition to isotropy, the starting point
(or distribution) of a random walk plays a role in the bounds on the mixing time.
The best bounds available are for awarm start—a starting distribution is already
close to the stationary distributionπ . The total variation distance between two
distributionsσ andπ with supportK is defined as:

‖σ − π‖ = sup
A⊆K
|σ (A)− π (A)|.

The following result is paraphrased from Lov´asz [1998].

THEOREM9 (LOVÁSZ 1998). Let K be a near-isotropic convex set,σ be any
distribution on it with the property that for any set S withπ (S) ≤ ε, we haveσ (S) ≤
10ε. Then afterÄ(n3

ε2 log 1
ε
) steps of hit-and-run starting atσ , the distribution

obtained has total variation distance less thanε from the uniform distribution.

A similar statement holds for ball walk with step sizeδ = 2( 1√
n
) (see Kannan

and Lovász [1999]). One advantage of hit-and-run is that there is no need to choose
the “step size”δ.

The problem with applying this directly in our algorithm to the current polytope
P is that after some iterationsP may not be in near-isotropic position. One way
to maintain isotropic position is by using random samples to calculate an affine
transformation. It was proven in Kannan et al. [1997] that for any convex set,
O(n2) samples allow us to find an affine transformation that brings the set into
near-isotropic position. This was subsequently improved toO(n log2 n) [Rudelson
1999]. The procedure for a general convex setK is straightforward:

(1) Let y1, y2, . . . , yN be random samples fromK .
(2) Compute

ȳ = 1

N

N∑
i=1

yi and Y = 1

N

N∑
i=1

(yi − ȳ)(yi − ȳ)T . (2)

The analysis of this procedure rests on the following consequence of a more general
lemma due to Rudelson [1999].

LEMMA 10 (RUDELSON1999). Let K be a convex body inRn in isotropic posi-
tion andη > 0. Let y1, . . . , yN be independent random points uniformly distributed
in K , with

N ≥ c
np

η2
log

n

η2
max{p, logn}.

where c is a fixed absolute constant and p is any positive integer. Then

E

(∥∥∥∥∥ 1

N

N∑
i=1

yi y
T
i − I

∥∥∥∥∥
p)
≤ ηp.
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COROLLARY 11. Let K be a convex set and̄y and Y be defined as in(2).
There is an absolute constant c such that for any integer p≥ 1, and N ≥
cpnlogn max{p, logn}, with probability at least1− 1

2p−1 , the set

K ′ = {x|Y 1
2 x + ȳ ∈ K }

is in near-isotropic position.

PROOF. Without loss of generality, we can assume thatK is in isotropic posi-
tion. Let

Y0 = 1

N

N∑
i=1

yi y
T
i .

Then, applying Lemma 10, we have

E(‖Y0− I ‖p) ≤ ηp.

Hence,

Pr (‖Y0− I ‖ > 2η) = Pr (‖Y0− I ‖p > (2η)p)

≤ E[‖Y0− I ‖p]

(2η)p

≤ 1

2p
.

Now Y = Y0− ȳȳT , and so‖Y − I ‖ ≤ ‖Y0− I ‖ + ‖ȳ‖2. The random variablēy
has a logconcave distribution andE(‖ȳ‖2) = n/N. So, there is a constantD such
that for anyt ≥ 1,

Pr

(
‖ȳ‖ > t

√
n

N

)
≤ e−Dt .

Usingη = 1/8 andt = √N/4n, we get that withN ≥ cpnlogn max{p, logn}
points (this is a different constantc from that in Lemma 10),

Pr

(
‖Y − I ‖ > 1

2

)
≤ 1

2p−1
.

Next, we evaluate maxvTY v and minvTY v over unit vectorsv.

vTY v = vT I v + vT (Y − I )v
≤ 1+ ‖Y − I ‖.

vTY v = vT I v + vT (Y − I )v
≥ 1− ‖Y − I ‖.

Thus, with probability 1− 1
2p−1 , vTY v is between1

2 and3
2 for any unit vectorv, and

so K ′ is in near-isotropic position.

In fact, usingN = O∗(n) points, the probability of failure in each iteration can
be made so low (inverse polynomial) that the probability of failure over the entire
course of the algorithm is smaller than any fixed constant. In order to keep the
sampling efficient, we calculate such an affine transformation in each iteration,
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using samples from the previous iteration. However, we do not need to apply the
transformation to the current polytopeP. Instead, we could keepP as it is and use
the following modified random walk: From a pointx,

(1) Choose a pointy uniformly at random fromx + δY 1
2 Bn.

(2) If y is in the convex set, then move toy; if not, try again.

A similar modification (choose the linè from Y
1
2 Bn rather thanBn) can be

made to hit-and-run also. In this article, we do not deal with the technical difficul-
ties caused by near-uniform sampling of nearly independent points. For a detailed
discussion of those issues, the reader is referred to Kannan et al. [1997].

THEOREM 12. Each iteration of the algorithm can be implemented in O∗(n4)
steps of a random walk in P.

PROOF. Our initial convex set, the cube, is in isotropic position and it is easy to
sample from it. Given a warm start in a current polytopeP in near-isotropic position,
we takeO∗(n3N) steps of a random walk to get 2N nearly random samples (using
Theorem 9). We compute the averagez of N of these, and ifz is not in the target
convex set, then we refineP with a new halfspaceH to getP′. Of the remainingN
points, at least a constant fraction (say1

4) are inP′ with high probability. Further,
their distribution is nearly uniform overP′. Using these points, we estimateY

1
2

by the formula of Corollary 11. With high probability this is a nonsingular matrix.
By Corollary 11, we only needN = O∗(n) samples in each iteration. The reason
for discarding the subset of samples used in computing the average is to avoid
correlations with future samples.

5.1. AN ISOTROPICVARIANT. Here we describe an alternative method which
implicitly maintains isotropy. It has the advantage of completely avoiding the com-
putation of the linear transformationY

1
2 .

Instead of walking with a single point, consider the followingmultipointwalk:
Maintainm pointsv1, v2, . . . , vm. For eachj = 1, . . . ,m,

(1) Choose a directioǹ=∑m
i=1 αi vi whereα1, . . . , αm are drawn independently

from the standard normal distribution.
(2) Movev j to a random point inK along`.

THEOREM 13. Suppose the multipoint walk is started with m= Ä(n log2 n)
points drawn from a distributionσ that satisfiesσ (S) ≤ 10ε for any subset S with
π (S) ≤ ε. Then their joint distribution afterÄ(mn3

ε2 log 1
ε
) steps has total variation

distance less thanε from the distribution obtained by picking m random points
uniformly and independently fromπ .

PROOF. The random walk described above is invariant under affine transfor-
mations, meaning there is a one-to-one map betweeen a walk inK and a walk in an
affine transformation ofK ; hence we can assume thatK is isotropic. Now consider
a slightly different walk where we keepm points, pick one and make a standard hit-
and-run step, that is, the direction is chosen uniformly. The corresponding Markov
chain has states for eachm-tuple of points fromK , and since each point is walk-
ing independently, it follows from Theorem 9 that the chain has the bound descri-
bed above.
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Compare this to the Markov chain for our random walk. The stationary distribu-
tion is the same (our Markov chain is symmetric). The main observation is that for
v1, . . . , vm picked at random andm = Ä(n log2 n), Corollary 11 imples that with
high probability, the matrix of inertia has eigenvalues bounded by constants from
above and below. We can choosem so that this probability is 1− 1

n10 . Thus, for all
but a 1

n10 fraction of states, the probability of each single transition of our Markov
chain is within a constant factor of the first Markov chain. So the conductance of
any subset of probability greater than1n8 (say) is within a constant factor of its
conductance in the first chain. Since we start out with a warm distribution (i.e., a
large subset), this implies the bound on the mixing time.

Thus, the entire convex programming algorithm now consists of the following:
We maintain 2N random points in the current polytopeP. We useN of them to
generate the query point and refineP. Among the rest, we keep those that remain
in P, and continue to walk randomly as described above till we have 2N random
points again.

6. A Generalization

In this section, we consider the problem of optimization over a convex set given by
a weaker oracle, namely a membership oracle. In Gr¨otschel et al. [1988], it is shown
that this is indeed possible using a sophisticated variant of the ellipsoid algorithm,
provided we have acenteredconvex setK . That is, in addition to the membership
oracle, we are given a pointy ∈ K , and a guarantee that a ball of radiusr around
y is contained inK . The algorithm and proof there are quite nice but intricate.2

Our algorithm provides a solution for a more general problem:K is the inter-
section of two convex setsK1 andK2. We are given a separation oracle forK1, a
membership oracle forK2 and a point inK2. The problem is to minimize a convex
function overK .

THEOREM 14. Let K = K1 ∩ K2 where K1 is given by a separation oracle
and K2 by a membership oracle. Let R be the radius of an origin-centered ball
containing K . Then, given a point y∈ K2 such that the ball of radius r around y
is contained in K2 (i.e., K2 is centered), the optimization problem over K can be
solved in time polynomial in n andlog R

r .

PROOF. It is clear that optimization is reducible to feasibility, that is, we just
need to find a pointx in K or declare thatK is empty. We start withP asK2 inter-
sected with the ball of radius 2R with centery and apply our algorithm. The key
procedure, a random walk inP, needs a point inP and a membership oracle forP,
both of which we have initially and at each iteration. UsingO∗(n) samples we can
bring P into near-isotropic position. Also, each subsequent query pointz is guaran-
teed to be inK2, since it is the average of points fromK2. Thus, the algorithm needs
at mostO(n log R

r ) iterations andO(n log R
r ) calls to the separation oracle forK1.

Each iteration (after the first) makesO∗(n4) calls to the membership oracle forK2.
To bring the initial setP into isotropic position, we can adapt the “chain of

bodies” procedure of Kannan et al. [1997]. SinceK2 is centered, it contains a ball

2 It is not known whether Vaidya’s algorithm can be extended to solve this problem.
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of radiusr aroundy. Scale up so thaty + r Bn is in isotropic position and call it
Q (just for convenience; this has the effect of scaling upR also). Now consider
Q′ = P ∩ (y+ 2

1
n r Bn), that is,K2 intersected with the ball of radius 21/nr around

y. The volume ofQ′ is at most twice the volume ofQ. This is because

Q′ = P ∩ (y+ 2
1
n r Bn) ⊆ 2

1
n (P ∩ (y+ r Bn)) = 2

1
n Q.

Thus, a uniform sample fromQ provides a warm start for sampling fromQ′.
Sample fromQ′, drawing each sample inpoly(n) time and use the samples to
calculate an affine transformation that would putQ′ in isotropic position. Apply
the transformation toP. ResetQ to be the transformedQ′, y to be its center of
gravity andr to be the radius of the ball aroundy containingQ. Again letQ′ be the
intersection ofP with the ball of radius 21/nr aroundy. After at mostO(n log R

r )
such phases,P will be in near-isotropic position.

7. Extensions

The methods of this article suggest the followinginterior point algorithm for op-
timization. Suppose we want to maximizecT x over a full-dimensional convex set
K . We start with a feasible solutionz1 in K . Then add the constraintcT x ≥ cT z1
and letK := K ∩ {x | cT x ≥ cT z1}. Next we generateN random pointsyi in the
setK and letz2 be their average. IfcT z2 − cT z1 < ε, we stop; otherwise, we set
K := K ∩ {x | cT x > cT z2}, and continue.

The algorithms seems to merit empirical evaluation; in practice, it might be pos-
sible to sample more efficiently than the known worst-case bounds. The algorithm
also presents a strong motivation to find geometric random walks that mix faster.
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